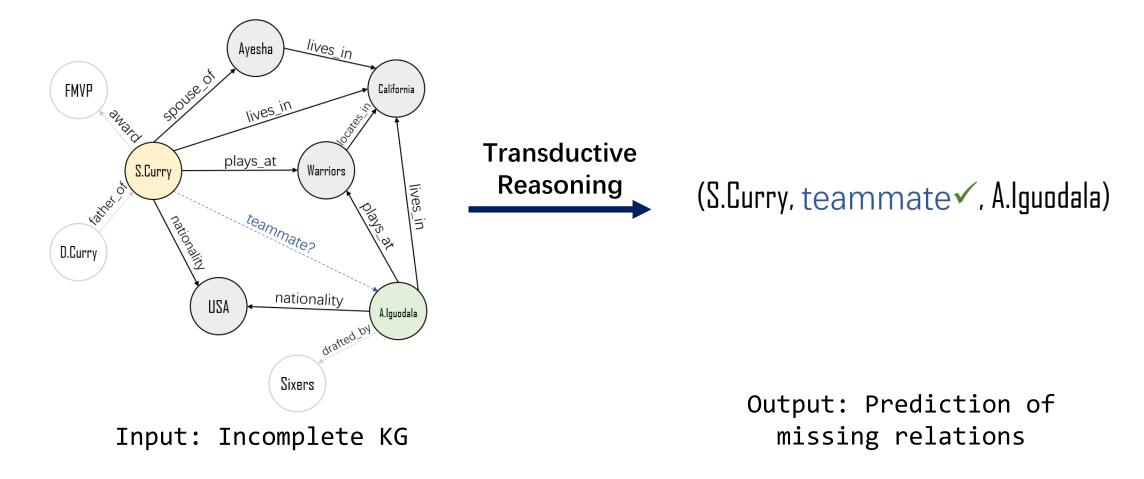
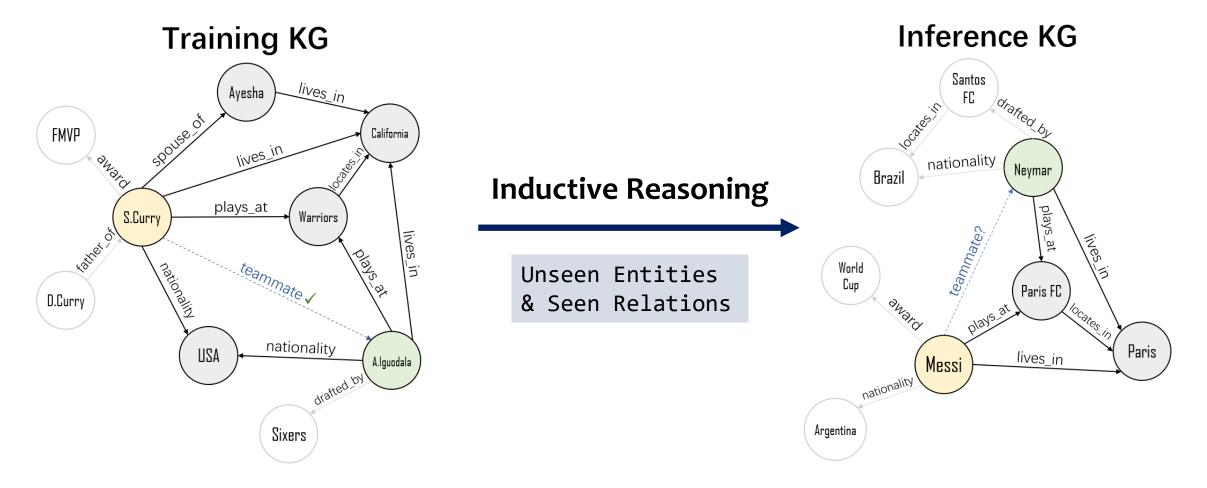


Inductive Relation Prediction from Relational Paths and Context with Hierarchical Transformers

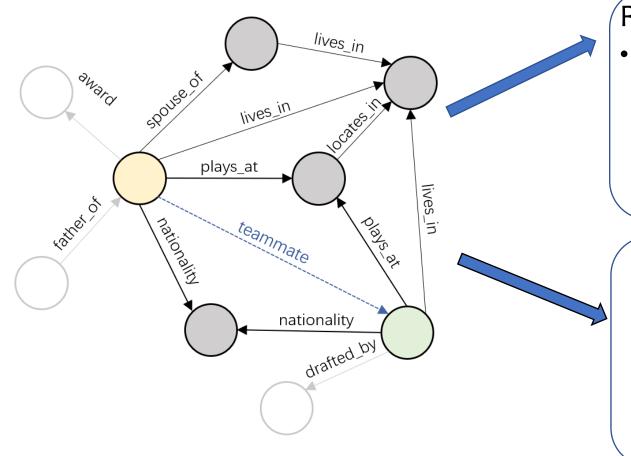

Jiaang Li¹, Quan Wang^{2*}, Zhendong Mao¹

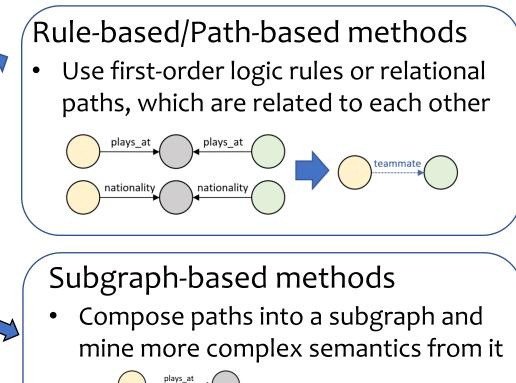
1: University of Science and Technology of China, Hefei, Anhui, China;2: Beijing University of Posts and Telecommunications, Beijing, China


Background

• Definition: Predict missing relations from an incomplete KG

Cannot generalize to new entities

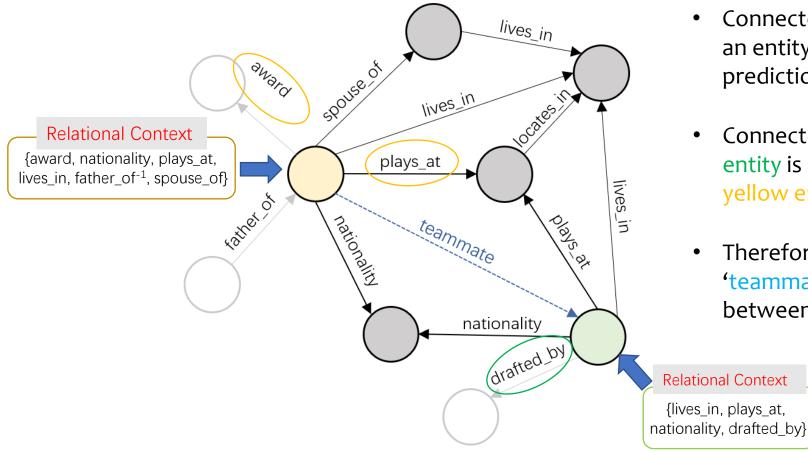

• Definition: Learn from one KG, and predict relations on a new one



Generalize to KGs with entirely new entities

Existing Methods: Overview

• Methods with *inductive* ability can be divided into two categories

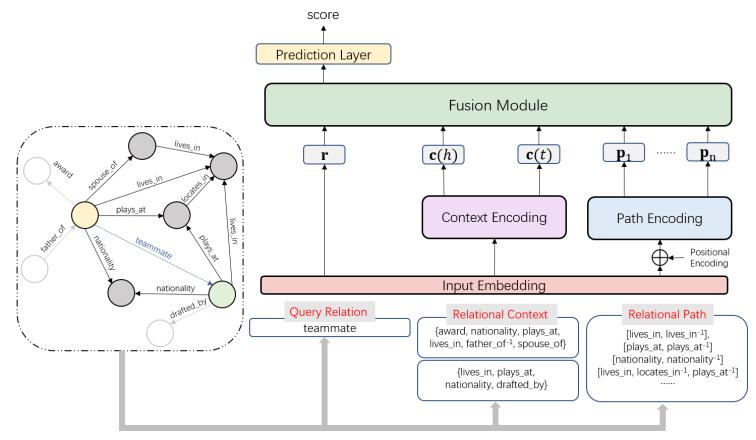


nationality

Use only the connections between entities

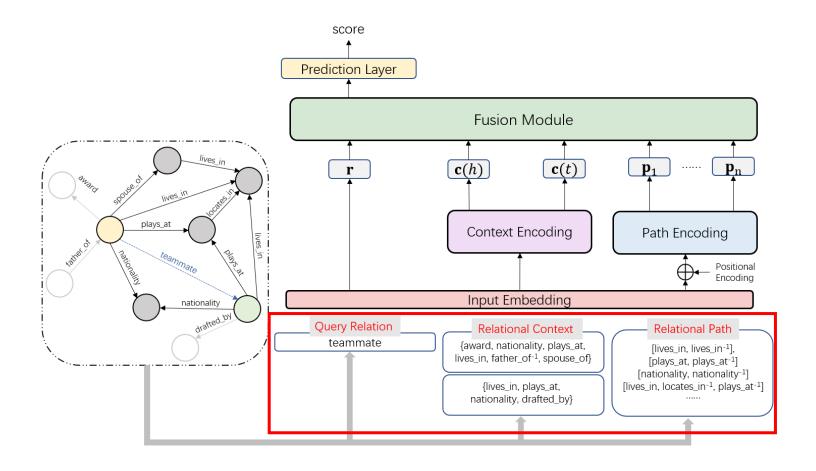
Existing Methods: Issue

Connections between entities may ignore valuable information

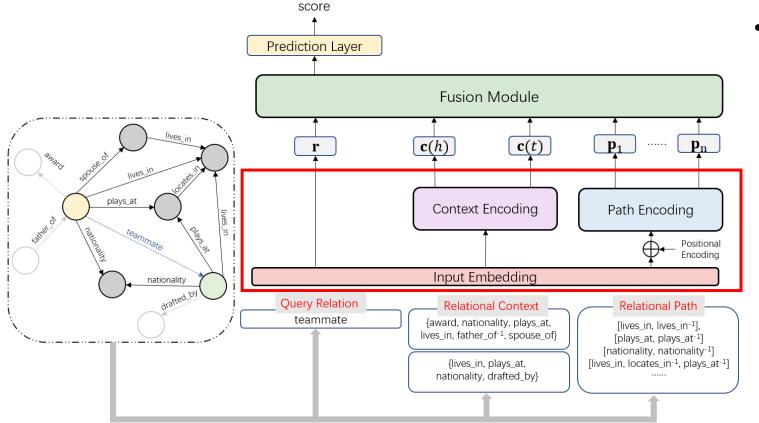


- Connected relations (Relational Context) indicate an entity's attribute, valuable for relation prediction but missed in connections
- Connected relation 'drafted_by' suggests green entity is an athlete. 'award' & 'plays_at' suggests yellow entity is highly likely to be an athlete, too.
- Therefore, it's more likely to be a missing relation 'teammate' between these two entities, than between others.

ISSUE: Ignore each entity's own attributes


Method

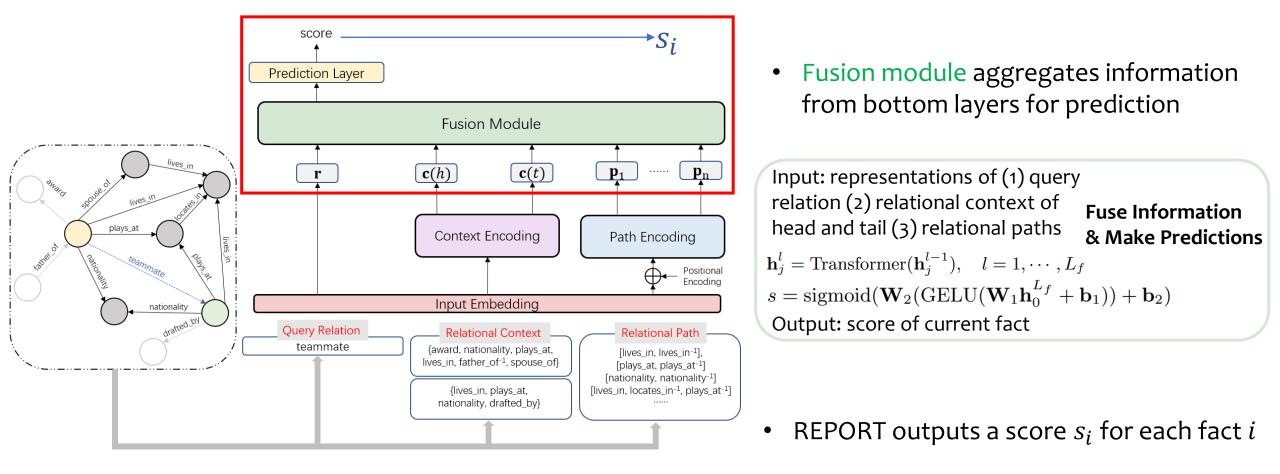
We propose REPORT: RElational Paths and cOntext with hieRarchical Transformers


- Use **relational paths** to capture connections between entities
- Use **relational context** to reflect entity attributes
- Aggregate different types of input by hierarchical Transformers
 Hierarchically composing different information sources is a divide-andconquer strategy, thus is efficient.

• Three types of input

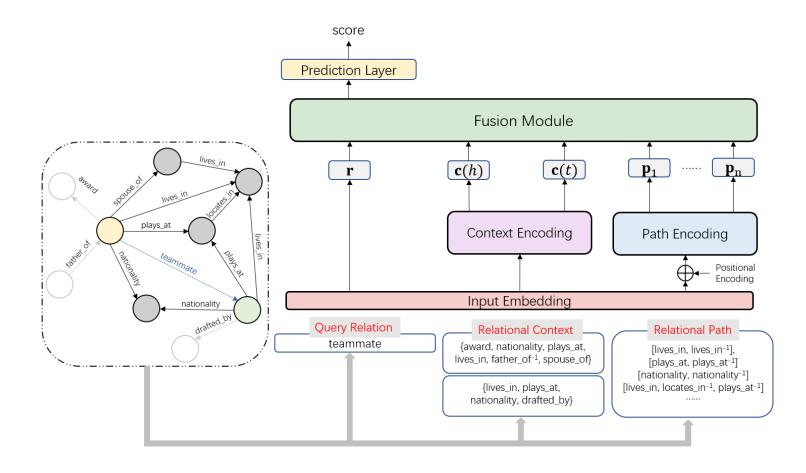
- **Relational path:** A sequence of relations taken from a path linking two entities.
- **Relational context:** A set of an entity's connected relations.
- **Query relation:** indicate the missing link to be predicted.

• Bottom layers of hierarchical Transformers


Each path and context is transformed and encoded by encoding modules

Input: [PCLS] +relational path sequence	
$\mathbf{x}_{j}^{0}=\mathbf{ele}_{j}^{p_{i}}+\mathbf{pos}_{j}$	Encode
$\mathbf{x}_{j}^{l} = \text{Transformer}(\mathbf{x}_{j}^{l-1}), l = 1, \cdots, L_{p}$	Path
Output: hidden state of [PCLS]	

Input: [HCLS]\[TCLS]+relational context set


$$\mathbf{y}_{j}^{0} = \mathbf{ele}_{j}^{h}$$
 Encode
 $\mathbf{y}_{j}^{l} = \operatorname{Transformer}(\mathbf{y}_{j}^{l-1}), \quad l = 1, \cdots, L_{c}$ Context
Output: hidden state of [HCLS]\[TCLS]

• Top layers of hierarchical Transformers

Model Training

• **REPORT: RElational Paths and cOntext with hieRarchical Transformers**

 To generate higher scores for positive triples and lower scores for negative ones. REPORT is trained with Binary Cross-Entropy (BCE) Loss:

$$\mathcal{L} = -\sum_{f_i \in \mathcal{F}^+ \cup \mathcal{F}^-} (y_i \log s_i + (1 - y_i) \log (1 - s_i))$$

 Negative samples are constructed by replacing the heads or tails of positive triplets with randomly selected entities.

 $\mathcal{F}^{-} = \{ (h', r, t) \text{ or } (h, r, t') \notin \mathcal{F}^{+} | (h, r, t) \in \mathcal{F}^{+} \}$

Experiments

Datasets

- We use **two benchmark datasets**, each containing **four subsets** with varying sizes sampled from WN18RR and FB15k-237, proposed in GraIL(Teru et al. 2020).
- Each subset has a training KG, and an inference KG with unseen entities and seen relations

		WN18RR				FB15K-237			
		#Relation	#Entity	#Query	#Fact	#Relation	#Entity	#Query	#Fact
v1	train	9	2,746	630	5,410	180	1,594	489	4,245
	infer	8	922	188	1,618	142	1,093	205	1,993
v2	train	10	6,954	1,838	15,262	200	2,608	1,166	9,739
	infer	10	2,757	441	4,011	172	1,660	478	4,145
v3	train	11	12,078	3,097	25,901	215	3,668	2,194	17,986
	infer	11	5,084	605	6,327	183	2,501	865	7,406
v4	train	9	3,861	934	7,940	219	4,707	3,352	27,203
	infer	9	7,084	1,429	12,334	200	3,051	1,424	11,714

In train:

#Query: #triplets for validation in training KG; #Fact: #triplets in the background KG (training KG).

In infer:

#Query: #triplets for inference in inference KG; **#Fact: #triplets** in the background KG (inference KG).

- We report mean reciprocal rank (MRR) and Hits@10, averaged in five runs.
- Best results are bold, second best ones are underlined.

		WN	8RR		FB15k-237				
Model	v1	v2	v3	v 4	v1	v2	v3	v4	
	H@10 MRR	H@10 MRR	H@10 MRR	H@10 MRR	H@10 MRR	H@10 MRR	H@10 MRR	H@10 MRR	
NeuraLP DRUM RuleN GraIL CoMPILE TACT RPC-IR ConGLR	$\begin{array}{rrrrr} 74.37 & 71.74 \\ 74.37 & 72.46 \\ 80.85 & 79.15 \\ 82.45 & \underline{80.45} \\ 83.60 & 78.28 \\ 84.04 & \\ 85.11 & \\ \underline{85.64} & \end{array}$	68.93 68.54 68.93 68.82 78.23 77.82 78.68 78.13 79.82 <u>79.61</u> 81.63 — 92.93 —	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	52.90 48.70 52.90 49.64 87.69 73.68 82.83 70.35 84.67 66.95 85.20 — 84.36 — <u>88.61</u> —	55.8849.5455.8850.4385.60 74.19 89.2970.6087.4463.6988.6989.2289.31	
REPORT	88.03 80.95	<u>85.83</u> 82.01	72.31 58.38	<u>81.46</u> 77.43	71.69 53.22	88.91 70.62	91.62 <u>71.51</u>	92.28 <u>71.28</u>	

Achieve better results than SOTA baselines on most subsets

• Ablation results (Hits@10) when discarding relational context or relational paths from the input

	WN18RR				FB15k-237			
	v1	v2	v3	v4	v 1	v2	v3	v4
REPORT w\o context w\o path	88.03 83.78 27.66	85.83 81.63 31.29	72.31 63.31 38.51	81.46 76.35 28.90	71.69 61.22 38.54	88.91 79.81 59.94	91.62 77.86 41.39	92.28 72.93 35.50

Both types of information are effective for inductive relation prediction

Case Studies

- Attention scores in fusion module's last layer indicate different elements' contribution scores.
- Elements with higher scores are more important for prediction.

Query Fact	Component				
	[people/institution ⁻¹ , people/institution, field_of_study]	0.222			
(University of Arizona, field_of_study, Finance)	[people/institution ⁻¹ , people/study, field_of_study ⁻¹ , field_of_study]	0.188			
	[field_of_study, study/students_majoring, field_of_study ⁻¹ , field_of_study]	0.061			
	[music/artist, music_genere/artist ⁻¹ , music_genere/artist]	0.187			
(Sony BMG Music Entertainment, music/artist,Christina Aguilera)	tail:{celebrity/dated ⁻¹ ,music_genere/artist ⁻¹ ,celebrity/canoodled ⁻¹ , people/place_lived,award/award_winner ⁻¹ }	0.148			
	[headquarters_location, vacation_choice_of, nominated_with, celebrity/canoodled]	0.120			
	[award/award_winner, ceremony/award_winner ⁻¹]	0.282			
(Grammy Award for Best Female Pop Vocal	[award_nominee/award ⁻¹ ,ceremony/award_winner ⁻¹]	0.158			
,award/ceremony, 52nd Grammy Awards-US)	[award_nominee/award ⁻¹ , nominated_with, award/award_winner ⁻¹]	0.086			
	[administrative_parent]	0.368			
(Sardina, administrative_division_of, Italy)	[location_contain ⁻¹]	0.326			
	head:{administrative_parent,location_contain ⁻¹ ,vacation_choice_of}	0.221			
(Broadcast Film Critics Association Award for	[award_nomination, award_nomination ^{-1} , award_nomination]	0.331			
Best Film, award_nomination, Walk the Line)	[award_nomination, award_wining_work, award_nomination]	0.266			
	[award_nomination, film_country, film_country $^{-1}$]	0.119			

REPORT is interpretable by providing most important elements for prediction

- ✓ The first work that involves relational context to supplement connection information in IRP;
- ✓ A new framework is proposed for aggregating context and paths in a hierarchical fashion;
- ✓ **Consistent improvements** across eight subsets of two benchmarks;
- ✓ **Explanations** can be **automatically** generated for prediction results;

IRP from Relational Paths and Context with Hierarchical Transformers

Thank you !